Monday, August 20, 2012

Short Reach Communications: Can we Talk?


Breaker-one-nine, short reach communications have been around for some time. They have also involved social networking, 10-4.

Introduction
As digital signage becomes more talented in recognizing the consumer, is displaying "push" advertising on the screen the best way to interact with viewers. As home viewers sit in front of their TVs with their cell phones, how long until the TV learns to interact through the cell phone as well.

Cell Phones
There are four radio receive functions on a smart phone (Cellular, WiFi, Blue Tooth, and GPS). In addition the phone has other sensors that can be used to receive data (microphone, camera, touch panel, and motion sensor). In some cases the data rates are low, but the tiniest amounts of data can be used to set up a WiFi connection. The popular app Bump uses the phone’s GPS (providing location) and motion sensor (providing a time-stamp and impact signature) to set up a WiFi connection between two phones that are "bumped" into each other.

Smart phones also have a variety of data output options. There are the three radio output protocols Cellular, WiFi, and Blue Tooth). There is also the speaker, the display, and the camera flash. The display and speaker are principally for output to people and the camera flash is not principally a communications device at all. However, as with Bump’s use of the motion sensor, co-opting these as digital communications devices is foreseeable. Both inputs and outputs can be characterized by their data rate, range, and security (or sometimes more appropriately, privacy).

In addition to these channels there are others that could be added to the smart phone platform. Near Field Communications (NFC) is an updated version of RFID. It now comes in the traditional static version (conveying a never-changing ID for either the phone or the user) as well as an active version that is a genuine data link. Infrared (IR) data transfer used to be on the palm-top computers and some phones, but has mostly been dropped from the phone. Tablets, however, commonly do have an IR port as, of course, do TVs and remote controls.

TV and Signage
Currently, the most common mode of input from a person to their TV is via the IR link between the TV and remote control. In digital signage, it is either through a touch panel or the person accessing a displayed QSR code, opting in for more information. As signage grows smarter, the consumer’s very face becomes a mode of input as the signage recognizes the person to some degree (age, gender, etc.) and crafts specific content for that person. However, push advertising can be intrusive, especially if it singles out an individual in a public place. Even if a consumer opts in to interact with a digital sign, how best should they signal that and over what channels should the link be established. The sign could just display the requested content. It could also communicate via the consumer’s smart phone, not necessarily though the cellular or WiFi connection.

With the consumer's home TV, most cable systems have "push button to obtain more information" function. Advertisers do not use QSR codes as most sit to far from the TV to read a QSR with their camera phones. There is also the same question as in digital signage, should the requested information be put on the main display or delivered to the cell phone.

Conclusion Displaying push, or even opt-in information on the main display may not always be appropriate or welcome for either digital signage or TV. The cell phone offers a convenience and multiplicity of channels to deliver custom information securely and privately. Though the home TV solution does not necessarily have to be the digital signage solution, Having the same interactions at home and out of home would have some benefit. Particularly for the digital signage industry, some though should be given as to how interactions should take place.

Norm

Friday, August 17, 2012

My Top Ten Display Movies


1) Minority Report: “A Day Made of Glass” comes to fruition. Similar amounts of digital signage can be found in “Blade Runner,” “1984”, “Ultraviolet”. Actually ubiquitous display technology is a common theme in many science fiction movies. One question the movie raises... A store window is kind of a display itself. At what point does that real estate become too valuable to leave it as a window and stores in high traffic areas routinely cover the front of their business in digital signage. The image here is not from the movie but the present day Akihabara. In pricier areas of Tokyo, the signage is just as dense but has been some form of electronic display for some time.

2) Poltergeist: Your mother always warned you about watching TV in the dark. This movie shows how hazardous it can really be. Similar themes are in “The Ring,” “Videodrome.” Something evil coming out of the TV is again a common theme. Consumers will not necessarily want the screens they are passing buy to recognize them or try and interact with them without first being invited. As digital signage learns to recognize passers-by and launch custom "push" advertising, an older person would not necessarily want every sign they pass to flash an ad for adult diapers.

3) 2001 A Space Odyssey: Not a display-centric movie like the others but featured lots of computer graphics that had to be created by hand as the technology did not exist when the movie was made. It also conveys some of the dangers of home automation. In the movie, HAL has a holographic processor. His system design would more resemble a massively parallel GPU than a CPU. As the embedded processing power in a TV set increases, it would be expected that that brain power would be put to other uses.

4) Strange Days: The display has no screen but plays directly in your head. However, the display is not interactive, you just sit there and watch/experience. The 1983 movie “Brainstorm” is centered on a similar device. "The Matrix" was also centered on such a device but was highly interactive; it incorporates social networking as well. There is always a market for a more lifelike display, hence the current interest in 3D. Presumably holographic displays will come between now and such an invention. There is some current development work being done on "smellivision," expanding the sensory input of a TV. Being the most primitive of the human senses, smell/taste bypasses most of the higher, logical, functions of the brain and can elicit a purely emotional reaction. Some restaurants utilize this by purposely venting their kitchens out of the front of the store rather than the back. With a selective venting system or a device that could adsorb smells and selectively release them on-que and digital signage, it could be possible to both display and smell individual menu items electronically.

5) Stay Tuned: As things can come out of your TV such as in “Poltergeist”, you can also fall in.... Actually they fall into the satellite dish but wind up in the TV. "Tron" is also in this category. Virtual reality headsets can give the impression that you are inside a digital creation or at some remote location. (Inherently, this is what a flight simulator does.) However, repeated launches of near-to-eye product have met with a ho-hum from the consumer. My own belief is that a holographic solution is needed to get around eye strain issues.

6)Red Planet Again, not a display centric movie but it does feature a flexible high information content display. Although very different, Dick Tracy has a similar device. OK, Dick Tracy is more famous as a newspaper cartoon rather than a movie. However, it is probably many folks introduction to the idea of a cell phone. With all of the knobs, it definitely did not have a touch panel, but being located on his wrist and having a curved screen, it probably uses an OLED rather than an LCD; very hip. This August 20 headline from the NY Times shows just how hip, "The Next Wave for the Wristwatch."








7)V for Vendetta registers on three counts. With all of the public information displays in London wired to a central system, it shows the need for network security to avoid having the system hijacked. The characters in the movie also make extensive use of videoconferencing and one of the key scenes takes place in a bathroom that is amply fitted with TV screens.... I believe that bathroom TVs will be one of the consumer spin-offs of the experience gained weatherizing LCDs for outdoor digital signage and outdoor TV. TVs in the bathroom have been standard in Westin hotels for some time.

8)Snow White I mentioned earlier that a shop window is a kind of display; so are the mirrors, especially in a clothing store. I think that Digital Mirrors are an inevitability. They can be signage as well when they are not working as mirrors. For the more color conscious, they can also show the appearance of clothing under different lighting conditions and can show the consumer against different backgrounds. In the home, the bathroom medicine cabinet offers a standard footprint that is begging for a product.

9)Amazon Women on the Moon: This movie is very similar to "The Boob Tube" but strangely not at all like "Amazon Women in in the Avocado Jungle". In the era before High Definition Content Protection (HDCP) the order to "Defend Borders" was ultimately a failure. However, the brick and mortar retailers have been able to mount a defense against "showrooming".

10) Couldn't think of ten, other than using some of the duplicates mentioned earlier. Check back and I will add more if I think of them. Please feel free to make suggestions in the Comments section.

Conclusion
I expect electronic displays to become ubiquitous in urban environments. I also expect these display to become increasingly smart, interactive, and more engrossing as well. However, human privacy must be respected. I expect OLED technology to have the greatest impact in the mobile market. Also, I mentioned holography quite a bit.

Norm

Monday, August 13, 2012

Will CCFL Baklights be around Next Year


Cold Cathode Florescent Lamps (CCFLs) provide the light that most LCDs use to produce an image. Sometimes technology transitions are subtle and take place over many years. More often than not they are dramatic, sudden, and absolute.... especially in display technology. Sam Matsuno of DisplaySearch, first came to prominence when he described the tipping point when LCDs would not only start replacing CRTs but that the transition would proceed rapidly. In notebook technology, the transition from the market being 80% monochrome to being 95% color only took about 9 months. (The transition from 4:3 to 16:10 followed a similar path.) Color LCDs reached a tipping point where there ceased to be any cost advantage to monochrome. Now we may have just such a tipping point in LCD backlights. "CCFL and LED price gap closes as CCFL costs explode"

For the CCFL suppliers to this market, "I just want to celebrate another day of livin, " from the band Rare Earth.

Norm

OLEDs and Swords


At my undergraduate college, one of the first things you are given to do in materials science lab is to make a small version of a samurai sword. Though the student body is certainly smart enough and they understand the principles, no one ever makes one that works, at least not to my knowledge. Success depends on getting the edge of the sword to follow the water quenching curve on the diagram while the time-temperature-transformation profile of the back of the sword more resembles the air cooling curve. Of course, the entire sword has to be water quenched at once. There is a story about a samurai sword maker that cut off the hand o his apprentice when the apprentice stuck his hand in the quench water to see what temperature it was; the water temperature was a secret that the master was not ready to reveal. The diagram above is referred to as a Time-Temperature-Tansformation (TTT) curve.

The entire process is very dynamic and analysis of the end product does not necessarily tell you what went on. The problem with a student sitting down and figuring this all out is that there are multiple variables and the entire process is very non-linear; the difference between being very close and being a million mils away is not always apparent. Sometimes it does not matter how smart you are, you have to have the right recipe. That is why a number of companies have sprung up in silicon valley that offer a process for testing multiple micro-samples at once, to speed up the process of finding the right recipe. This differs substantially from a normal product development where all of the sub-components can be tested separately. A valley VC that specializes in materials based companies once told me that he never actually invests in a company that has yet to complete their materials development. This is in part, why there are so few technical glass companies in the world. A lot depends on their experience and catalog of recipes (glass chemistry, furnace chemistry, heat treating, etc.) that they have built up over time. Sometimes tramp chemical elements in the parts per billion range can have a dramatic effect on the product outcome. As semi-conductor makers are aware, softly whispering the word alkali in the fab can put enough sodium in the product to kill production. It was a parts per billion chemistry issue (with a phosphor poison) that originally put Westinghouse, the inventor of the active matrix LCD, out of the TV business.

OLED process development has exactly the same issues.