Wednesday, March 27, 2013

An Apple 4K TV?


Digitimes is reporting that Apple will release a 4K Apple branded TV in late 2013 or early 2014. Though possible, I would say this is unlikely. As has been widely discussed, 4K shares many of the handicaps that lead to disappointing 3D sales: specifically, an extreme premium on pricing with a bare content library. My impression is that to be the type of player that they want to be in TV, Apple has to be shooting for at least a 30% US market share. With the top end of the TV market, sets double the price of the average TV, never being more than 15% of the market, Apple needs to effectively split the TV market into the new and old. This is effectively what they accomplished with the cell phone market; smart phones became not just the high end of the market but a different category of phone. Can Apple do this with a new category of TV without either an existing 4K content base or an existing 4K developer community? Also, when Apple introduced increased resolution to the phone market, it was a pre-existing need and there were immediately applications that utilized the extra visual bandwidth. Few consumers make full use of HDTV resolution now, the extra visual bandwidth of 4K does not have the pre-existing need that phone resolutions had.

I think Apple is more likely to bring about their TV revolution by increasing the utility of existing available content. The Apple branded TV won’t be 4K but it will be a new aspect ratio with specialized HD content for the new screen real-estate. 4K may come later but coming on the heels of 3D, launching a new TV format with no existing content library is unlikely.

Thursday, March 14, 2013

A rant on "The Next Big Thing"



Digital Trends proclaims, "Sapphire is unscratchable, unbreakable, and the next big thing in touchscreens" Sapphire has not a prayer of living up to this hype. If you read through the article, the author makes no mention of Sapphire's index of refraction. Indeed, being a software guy, it would not be surprising to know that the author does not know what an index of refraction is. As I have pointed out in other posts, when displays were actually made in the US, materials science degrees were common among display development staff. When the US moved to 100% off-shore purchases, that went away as did much of the ability to comprehend materials impact on display technology.

As far as I know, every material harder than glass has a higher index of refraction (including Sapphire), meaning that it will have a much more reflective surface. With the exception of digital paper, current displays are terrible in bright sun. Switching to a Sapphire lens cover will make them unusable outdoors... kind of defeats the purpose of having a mobile device.

Tuesday, March 5, 2013

Flexible Glass Product 3 Years away


ZDNet is reporting that flexible glass products are still 3 years away. Flexible glass been offered for sale before. It was part of my product line in the mid 1990's and was already an old product then. The difference between Willow and Corning's previous flexible glass is that Willow is made with the same process used to make LCD substrates and has much better surface quality. There are two reasons for using a flexible glass substrate. One is cost reduction. (1) Roll-to-Roll processes are inherently lower cost than unitized production. However, roll-to-roll manufacturing is orders of magnitude harder to develop. This is especially true when manufacturing steps require specialized atmospheres. Added to this will be increased fab contamination from higher glass breakage with a spooled product; the bending puts the outer surface under some stress. As with all glass products, the edges are particularly susceptible to breakage but with a spool of glass, the breakage has much more glass that it can either propagate through and contaminate with micro-particles.

If, instead of cost reduction, the objective is (2) to merely make a flexible product, the spooled glass can be cut into sheets and handled like an ordinary substrate, only thinner. Shipping spools rather than individual sheets will result in some level of cost reduction but this may be off-set by higher breakage in glass and display manufacturing as well as transport breakage.

(2A)Also consider if the display will actually be flexible in use rather than just curved. If the objective is to make a curved display, rather than being flexible, it might be more beneficial to have a glass that can be reformed (sagged) at reasonable temperatures that will not spoil the TFT photolithography. Or, as with curved samuria sords (made from a straight piece of metal) it may be possible to heat treat or ion stuff the glass to develop a naturally cylindrical shape. The thinness of Willow will help with this.

The ZD Net article speculates that the product for flexible glass will be the iWatch. I expect this product may have a curved display that is not flexible, at least if it is an LCD rather than an OLED. I also would not assume that the first product of this type to come from Apple. Samsung had a standing request for Fusion drawn .1 mm glass (what is now called Willow) since flexible glass was first offered. They are also one of the leaders in OLED. They have been thinking about this for a good 20 years.

Thursday, February 21, 2013

Barry Blundell's "3D Displays and Spatial Interaction"


Exploring the Science, Art, Evolution and Use of 3D Technologies

“3D Displays and Spatial Interaction, Vol I” has now been made available for free download from Barry's website – www.barrygblundell.com The book can be downloaded in two parts, the first PDF file contains the Front Matter plus Chapters 1 through to 4, and the second file contains Chapters 5 through to 9, the Appendix, and an extensive reference list (comprising just over 700 references).

Here are some excerpts from the Forward, "The author needs little introduction; he is a highly-regarded historian of ‘the technology of images’, with a deep knowledge fuelled by his own groundbreaking work in volumetric 3-D display. I have learned a great deal in the pages of Barry’s writings since I entered the field of 3-D display in 1988.

This book is exciting for two reasons. First, you’ll learn - in a very clear, completely illustrated manner – about perception, interaction, and image display. For example, in perception, you’ll encounter the architecture of the eye, a deep catalogue of depth cues, and the visual cortex. You’ll learn about haptics and interaction, including the fundamental Fitts’ Law of visual and physical target acquisition. The book is rounded out (so to speak) with Barry’s excellent teachings on a complete variety of three-dimensional displays, spanning stereoscopic, lenticular, parallax barrier, and volumetric systems.

Second, I enjoy his writing because he magically expresses treasure-troves of deep historical and scientific knowledge underlying a variety of topics. Ever wonder not about who really invented the stereoscope, but what they argued over? What’s a horopter or how do you compute 3-D imagery? Never mind ‘what’s a volumetric display’, what might its embedded electronics look like?

I hope you’ll agree that a book of this sort has really been a long time coming. When I got a sneak preview, I certainly enjoyed page after page of history and science that was new to me, even after working in the display industry for 20 years.

Gregg Favalora
August 2010
Former CTO, Actuality Systems, Inc.
Principal, Optics for Hire.
Arlington, Mass.,USA"